Kamis, 18 Agustus 2011
PENGERTIAN ELEKTRONIKA
Elektronika adalah ilmu yang mempelajari alat listrik arus lemah yang dioperasikan dengan cara mengontrol aliran elektron atau partikel bermuatan listrik dalam suatu alat seperti komputer, peralatan elektronik, termokopel, semikonduktor, dan lain sebagainya. Ilmu yang mempelajari alat-alat seperti ini merupakan cabang dari ilmu fisika, sementara bentuk desain dan pembuatan sirkuit elektroniknya adalah bagian dari teknik elektro, teknik komputer, dan ilmu/ teknik elektronika dan instrumentasi.
Alat-alat yang menggunakan dasar kerja elektronika ini biasanya disebut sebagai peralatan elektronik (electronic devices). Contoh peralatan/ piranti elektronik ini: Tabung Sinar Katoda (Cathode Ray Tube, CRT), radio, TV, perekam kaset, perekam kaset video (VCR), perekam VCD, perekam DVD, kamera video, kamera digital, komputer pribadi desk-top, komputer Laptop, PDA (komputer saku), robot, smart card, dll.
Teori elektronika
Konstanta dielektrik - Konstanta gaya listrik
Medan Listrik - Permeabilitas - Permittivitas
Hukum Ampere - Hukum Coulomb - Hukum Faraday - Hukum Kirchhoff - Hukum Ohm
Persamaan Maxwell
Teorema super posisi
Komponen elektronik
Komponen Pasif
resistor - kondensator - induktor - transformator
Komponen Aktif
dioda: dioda cahaya - dioda mundur - dioda terobosan - dioda foto - dioda laser - diode Zener - dioda Schottky
transistor: transistor efek–medan - transistor bipolar - transistor IGBT - transistor Darlington - transistor foto
Sensor dan Aktuator Elektromekanik
mikrofon - speaker - strain gauge - saklar - termistor - MEMS (Micro Electro Mechanical Systems)
Rangkaian elektronika
Sirkuit analog
Penguat - Penguat operasi - Penguat daya - Pelemah - Integrator - Diferensiator - Penyearah - Pengganda tegangan - Filter elektronik
Sirkuit Digital
Gerbang logika - flip-flop - penghitung biner - register - multiplekser - Penjumlah biner - Pengurang biner -Pengganda biner - Pengolah mikro - Pengendali mikro - Pengubah analog ke digital - Pengubah digital ke analog - Pemroses isyarat digital - komputer
KOMPONEN DIGITAL UMUM KOMPUTER
IC ( Integrated Circuit )
IC (Integrated Circuit) merupakan komponen semikonduktor yang di dalamnya terdapat puluhan, ratusan atau ribuan, bahkan lebih komponen dasar elektronik yang terdiri dari sejumlah komponen resistor, transistor, diode, dan komponen semikonduktor lainnya. Komponen dalam IC tersebut membentuk suatu rangkaian yang terintegrasi menjadi sebuah rangkaian berbentuk chip kecil.
IC digunakan untuk beberapa keperluan pembuatan peralatan elektronik agar mudah dirangkai menjadi peralatan yang berukuran relatif kecil. Sebelum adanya IC, hampir seluruh peralatan elektronik dibuat dari satuan komponen yang dihubungkan satu sama lainnya menggunakan kawat atau kabel.IC dibalut dalam kemasan tertentu agar dapat terlindungi dari gangguan luar seperti terhadap kelembaban debu dan kontaminasi zat lainnya. Kemasan IC dibuat dari bahan ceramic dan plastic, serta didesain untuk mudah dalam pemasangan dan penyambungannya. IC dapat bekerja dengan diberikan catuan tegangan 5 – 12 volt sesuai dengan tipe IC nya. Jika diberikan masukan tegangan lebih dari batas yang telah ditentukan maka IC tersebut akan rusak.
Keunggulan dan kekurangan IC
Keunggulan IC
IC telah digunakan secara luas diberbagai bidang, salah satunya dibidang industri Dirgantara, dimana rangkaian kontrol elektroniknya akan semakin ringkas dan kecil sehingga dapat mengurangi berat Satelit, Misil dan jenis-jenis pesawat ruang angkasa lainnya. Desain komputer yang sangat kompleks dapat dipermudah, sehingga banyaknya komponen dapat dikurangi dan ukuran motherboardnya dapat diperkecil. Contoh lain misalnya IC digunakan di dalam mesin penghitung elektronik (kalkulator), juga telepon seluler (ponsel) yang bentuknya relative kecil. Di era teknologi canggih saat ini, peralatan elektronik dituntut agar mempunyai ukuran dan beratnya seringan dan sekecil mungkin dan hal itu dapat dimungkinkan dengan penggunaannya IC. Selain ukuran dan berat IC yang kecil dan ringan, IC juga memberikan keuntungan lain yaitu bila dibandingkan dengan sirkit - sirkit konvensional yang banyak menggunakan komponen IC dengan sirkit yang relatif kecil hanya mengkonsumsi sedikit sumber tenaga dan tidak menimbulkan panas berlebih sehingga tidak membutuhkan pendinginan (cooling system).
Kelemahan IC
Kelemahan IC atau kategori IC itu dapat dikatakan rusak antara lain adalah keterbatasannya di dalam menghadapi kelebihan arus listrik yang besar, dimana arus listrik berlebihan dapat menimbulkan panas di dalam komponen, sehingga komponen yang kecil seperti IC akan mudah rusak jika timbul panas yang berlebihan. Demikian pula keterbatasan IC dalam menghadapi tegangan yang besar, dimana tegangan yang besar dapat merusak lapisan isolator antar komponen di dalam IC. Contoh kerusakan misalnya, terjadi hubungan singkat antara komponen satu dengan lainnya di dalam IC, bila hal ini terjadi, maka IC dapat rusak dan menjadi tidak berguna.
Contoh IC
TTL (Transistor – Transistor Logic)
IC yang paling banyak digunakan secara luas saat ini adalah IC digital yang dipergunakan untuk peralatan komputer, kalkulator dan system kontrol elektronik. IC digital bekerja dengan dasar pengoperasian bilangan Biner Logic (bilangan dasar 2) yaitu hanya mengenal dua kondisi saja 1(on) dan 0 (off).
Jenis IC digital terdapat 2(dua) jenis yaitu TTL dan CMOS. Jenis IC-TTL dibangun dengan menggunakan transistor sebagai komponen utamanya dan fungsinya dipergunakan untuk berbagai variasi Logic, sehingga dinamakan Transistor.
Decoder
Decoder merupakan rangkaian kombinasional yang mempunyai masukkan (input) sebanyak n dan keluarannya (output) sebanyak 2 n. Decoder berfungsi untuk mengaktifkan salah satu dari saluran keluarannya untuk setiap pola masukan yang berbeda-beda. Decoder bersifat active low dan dilengkapi dengan saluran masukan enable low. Keluaran bersifat active lowlow atau memiliki tegangan rendah. Enable berfungsi untuk mengaktifkan atau me-nonaktif-kan rangkaian. Enable low maksudnya rangkaian akan aktif jika enable diberi masukan low atau tegangan rendah.
Multiplexer
Multiplexer merupakan rangkaian kombinasional yang memiliki masukan sejumlah 2n bit, n selector dan satu output. Multiplexer disebut juga data selector karena selector pada rangkaian multiplexer berfungsi untuk memilih data pada input mana yang akan dilewatkan ke output. Seperti decoder, multiplexer juga memiliki enable yang bersifat low yang berfungsi untuk mengaktifkan atau me-non-aktif-kan rangkaian.
Register
Komponen Register ini merupakan wadah penyimpan pada internal CPU yang bekerja pada saat terjadinya proses pengolahan data. Memori Register ini memang bersifat sementara dan hanya dipakai untuk menyimpan ragam data saat dilakukan pengolahan ataupun pengolahan terusannya.
Pencacah Biner
Pencacah merupakan suatu rangkaian logika yang berfungsi untuk mencacahjumlah pulsa pada bagian input dan keluaran berupa digit biner,dengan saluran tersendiri untuk setiap pangkat dua 2, 21, 22 dan seterusnya . Pencacah terdiri dari flip-flop yang diserikan dimana keadaan arus keluaranya ditahan sampai ada clock .
Pencacah dapat dibagi menjadi dua tipe, yaitu Synchronous dan Asynchonous. dimana keduanya dibedakan dengan bagaimana cara diclock.
Pencacah Asynchonous didisain dengan menggunakan flip-flop pada keadaan toggle. Flip-flop JK atau D dapat dibuat kedalam keadaan toglle. Flip-flop JK dapat dibuat dalam keadaan toglle dengan menghubungkan kedua input J dan K pada logika 1(high). Sedangkan untuk flip-flop tipe D, dapat dibuat dalam keadaan toglle
dengan menghubungkan keluaran Q kembali ke input.
Pencacah asynchonous bekerja dengan mengkaskade seri flip-flop dalam keadaan togle secara bersamaan. Keluaran tiap-tiap flip-flop digunakan sebagai clock untuk flip-flop berikutnya secara berurutan. Hal ini menyebabkan flip-flop berubah secara asynchonous, seperti gelombang. Pencacah asynchonous lebih dikenal
sebagai pencacah ripple.
KOMPONEN DIGITAL AUDIO WORKSTATION
Feb 19, '09 10:25 PM
untuk
DAW: DAW ( Digital Audio Workstation ) adalah sebuah sistem rekaman berbasis computer yang di rancang untuk menggantikan studio rekaman tradisional. DAW memiliki segala kemampuan dari studio rekaman tradisional seperti multi track recording dan playback, juga penggunaan berbagai macam fx untuk mixing seperti compressor, reverb, dan EQ. DAW modern bahkan memiliki kemampuan yang tak dimiliki oleh sistem studio rekaman masa lalu seperti kemampuan undo, non destructive editing, vocal correction, drum replacement, amp simulator, dsb.
Studio berbasis DAW terdiri atas 5 komponen utama yaitu:
1. Computer.
Computer berfungsi sebagai “host”dari Multi Track Software, dan Audio Converter. Computer juga menyediakan processing power yang diperlukan untuk operational audio dan plug in. Computer untuk DAW memiliki spesifikasi yang berbeda dengan kebanyakan computer kantoran atau game. Beberapa spesifikasi tambahan adalah:
Tingkat kebisingan yang rendah
Operating System yang di set untuk penggunaan software audio
Hard Disk yang memiliki cluster size lebih besar
Sound Card on-board yang dimatikan untuk mencegah conflict
dsb
2. Multi Track Software.
Disini adalah software yang kita gunakan untuk memproses data hasil rekaman. Biasanya sudah dilengkapi plug in seperti compressor, reverb, EQ, amp simulator, drum replacement, dsb. Beberapa Software yang banyak digunakan adalah:
Pro Tools
Cubase / Nuendo
Sonar
Digital Performer
Logic
dsb
3. Audio Converter.
Berfungsi untuk merubah signal analog menjadi digital, juga kebalikan nya yaitu digital menjadi analog. Converter yang kita maksud disini berbeda dengan sound card kebanyakan yang sering dipakai untuk rumahan atau game. Perbedaan adalah:
Memiliki input yang lebih banyak untuk dapat merekam beberapa instrument secara bersamaan. Biasanya antara 4 hingga 12 input.
Bisa di link. Apabila satu buah converter tak mencukupi, maka beberapa buah converter dapat di link untuk menyediakan input yang lebih banyak.
Dapat merekam dengan sample rate yang lebih tinggi.
Memiliki bit resolution / dynamic range yang lebih baik. Rata-rata converter audio saat ini memiliki noise floor sekitar – 115 dBFS.
Memiliki fitur “Free Latency Monitoring”. Fitur ini bisa diibaratkan seperti mixer yang berada di sound card, sehingga audio dikeluarkan lagi sebelum di proses oleh multi track software. Keuntungan nya adalah latency ( keterlambatan ) yang sangat kecil, bahkan terkadang tidak ada sama sekali. Dalam zero latency monitoring, yang di dengar adalah signal sebelum diproses.
4. Microphone.
Berfungsi sebagai transducer yaitu merubah gelombang suara di udara menjadi variasi voltase yang nanti nya akan dirubah menjadi data digital oleh converter.
5. Speaker Monitor.
Yang dimaksud disini adalah speaker yang flat dan dirancang khusus untuk kebutuhan mixing / mastering. Speaker flat ini berbeda dengan speaker rumahan, memiliki frequency response yang merata dari 30 Hz – 20 kHz. Dengan kata lain, speaker jenis ini jujur dalam me-reproduksi hasil mixing anda. Inilah yang diperlukan seorang Sound Engineer pada saat mixing. Yaitu mendapatkan gambaran akurat dari frequency berbagai instrument yang sedang di mixing. Apabila speaker yang anda gunakan untuk mixing tidak flat, maka telinga anda akan “tertipu” oleh speaker dan tidak dapat menentukan frequency dengan tepat
Dengan sistem DAW ini, anda dapat memiliki sebanyak mungkin Compresor, Reverb, atau plug in lain nya selama sistem anda sanggup. Bandingkan dengan di jaman analog yang dimana anda harus membeli banyak unit compressor, reverb, EQ, dan lain nya. Hal inilah yang menyebabkan semakin populer nya studio rekaman digital, dengan harga terjangkau dan kualitas yang professional. Kunci nya adalah: SDM yang handal dan berpengalaman.
Sistem DAW kualitas nya tergantung pada 3 hal yaitu:
Microphone dan kabel yang baik
Pre Amp dan Converter yang berkualitas
Computer yang kuat
Pre amp berfungsi untuk memperkuat dari microphone level menjadi line level sehingga signal dapat di "convert" menjadi digital. Proses pre amplification ini bisa memperkuat signal sebesar 400 x dari asli nya sehingga kualitas dari pre amp sangat mempengaruhi hasil rekaman.
Pada saat baru berkembang nya dunia digital recording, converter yang ada di pasaran hanya dapat menerima line level saja. Akan tetapi kini kebanyakan converter sudah menyertakan pre amp sehingga kini juga dapat menerima mic level dan instrument level. Walau begitu, banyak juga kita temui sistem digital yang mempergunakan mixer. Sistem semacam ini biasanya menggunakan converter dan pre amp yang terpisah.
Alasan beberapa orang mempergunakan pre amp terpisah adalah:
Seringkali pemilik studio sudah memiliki pre amp dengan karakteristik yang disukai
Converter hanya dapat menerima line level ( tidak memiliki pre amp yang digabung )
Beberapa pre amp kelas atas kualitas nya memang lebih baik
Dasarnya adalah bagaimana mendapatkan signal suara yang terbaik ke dalam computer anda. Dalam hal ini ada pepatah yang sangat benar adanya yaitu "Rubbish In Rubbish Out". Sebagaimana hebat nya mixing skill anda atau dibantu dengan alat processor terbaik juga tak akan menghasilkan hasil yang maksimal apabila signal awal nya tak berkualitas.
KOMPONEN DIGITAL BERUPA MULTIPLEXER
Teknologi ADSL (Asymmetric Digital Subscriber Line) adalah suatu teknologi MODEMyang memiliki kecepatan pentransferan data 1.5 Mbps sampai 8 Mbps untuk mendukung implementasi layanan multimedia pada jaringan broadband dengan menggunakan satu pair kabel tembaga.. Disebut asymmetric karena rate (kecepatan transmisi) dari arah downstream (sentral ke pelanggan) lebih besar dari arah upstream (pelanggan ke sentral), atau dapat dikatakan bahwa kecepatan transmisi dari arah downstream berbeda dengan dari arah upstream. Bit rate downstream 1,5-8 Mbps, upstream 16-640 Kbps. Adanya perbedaan kecepatan transmisi antara sisi downstream dan upstream dikarenakan kebutuhan koneksi internet lebih banyak digunakan untuk mengambil data (download) dari jaringan utama dibandingkan dengan pengiriman informasi (upload). Perbedaan antara modem konvensional dengan modem ADSL pada dasarnya dikarenakan perbedaan penggunaan frekuensi untuk mengirimkan sinyal atau data. Pada modem konvensional frekuensi yang digunakan di bawah 4 KHz, sedangkan pada modem ADSL digunakan frekuensi di atas 4 KHz.
Kelebihan modem ADSL yang lainnya adalah dari segi line codingnya yaitu menggunakan teknik modulasi multicarrier atau lebih dikenal dengan istilah DMT ( Discrete Multitone ). DMT mampu mengalokasikan bandwith untuk transmisi data sehingga transmisi dari tiap sub kanal lebih maksimal. Teknik multiplexing yang digunakan pada teknologi ADSL adalah melalui FDM (Frekuensi Division Multiplexing) atau Echo Cancellation. Cara kerja teknologi ADSL hanya berupa proses “dial-up connection”, bukan proses “call set-up” seperti jaringan fixed telephone, harus melalui proses dial tone dulu. Ketika ada permintaan dari user (pelanggan di rumah) untuk akses internet, maka modem ADSL sisi sentral akan langsung memprosesnya (dipisahkan apakah informasi yang diminta berupa data atau suara, alat pemisahnya disebut splitter). Selanjutnya informasi tersebut akan dilewatkan melalui MDF-RK-DP hingga KTB, kemudian di sisi pelanggan informasi data tersebut masuk ke splitter lagi, jika informasinya berupa akses internet (data) maka akan dimasukkan ke modem ADSL sisi pelanggan diteruskan ke PC user, jika berupa suara dari splitter langsung ke telepon, jika yang diminta video dari splitter masuk ke modem ADSL lalu masuk ke Set Top Box (STB) baru ke layar TV.
Multiplexing adalah Teknik menggabungkan beberapa sinyal untuk dikirimkan secara bersamaan pada suatu kanal transmisi. Dimana perangkat yang melakukan Multiplexing disebut Multiplexer atau disebut juga dengan istilah Transceiver / Mux. Dan untuk di sisi penerima, gabungan sinyal – sinyal itu akan kembali di pisahkan sesuai dengan tujuan masing – masing. Proses ini disebut dengan Demultiplexing. Receiver atau perangkat yang melakukan Demultiplexing disebut dengan Demultiplexer atau disebut juga dengan istilah Demux.
Tujuan Muliplexing bertujuan meningkatkan effisiensi penggunaan bandwidth / kapasitas saluran transmisi dengan cara berbagi akses bersama.
Jenis Teknik Multiplexing
Teknik Multiplexing yang umum digunakan adalah :
a. Time Division Multiplexing (TDM) :
- Synchronous TDM
- Asynchronous TDM
b. Frequency Division Multiplexing (FDM)
c. Code Division Multiplexing (CDM)
d. Wavelength Division Multiplexing (WDM)
e. Optical code Division Multiplexing (ODM)
Time Division Multiplexing (TDM)
Secara umum TDM menerapkan prinsip pemnggiliran waktu pemakaian saluran transmisi dengan mengalokasikan satu slot waktu (time slot) bagi setiap pemakai saluran (user).
TDM yaitu Terminal atau channel pemakaian bersama-sama kabel yang cepat dengan setiap channel membutuhkan waktu tertentu secara bergiliran (round-robin time-slicing). Biasanya waktu tersebut cukup digunakan untuk menghantar satu bit (kadang-kadang dipanggil bit interleaving) dari setiap channel secara bergiliran atau cukup untuk menghantar satu karakter (kadang-kadang dipanggil character interleaving atau byte interleaving).
Menggunakan metoda character interleaving, multiplexer akan mengambil satu karakter (jajaran bitnya) dari setiap channel secara bergiliran dan meletakkan pada kabel yang dipakai bersama-sama sehingga sampai ke ujung multiplexer untuk dipisahkan kembali melalui port masing-masing. Menggunakan metoda bit interleaving, multiplexer akan mengambil satu bit dari setiap channel secara bergiliran dan meletakkan pada kabel yang dipakai sehingga sampai ke ujung multiplexer untuk dipisahkan kembali melalui port masing-masing.
Jika ada channel yang tidak ada data untuk dihantar, TDM tetap menggunakan waktu untuk channel yang ada (tidak ada data yang dihantar), ini merugikan penggunaan kabel secara maksimun. Kelebihanya adalah karena teknik ini tidak memerlukan guardband jadi bandwidth dapat digunakan sepenuhnya dan perlaksanaan teknik ini tidak sekompleks teknik FDM. Teknik TDM terdiri atas :
Synchronous TDM
Hubungan antara sisi pengirim dan sisi penerima dalam komunikasi data yang menerapkan teknik Synchronous TDM dijelaskan secara skematik pada gambar
Gambar Synchronous TDM Cara kerja Synchronous TDM dijelaskan dengan ilustrasi dibawah ini
Gambar Ilustrasi hasil sampling dari input line
Asynchronous TDM
Untuk mengoptimalkan penggunaan saluran dengan cara menghindari adanya slot waktu yang kosong akibat tidak adanya data ( atau tidak aktif-nya pengguna) pada saat sampling setiap input line, maka pada Asynchronous TDM proses sampling hanya dilakukan untuk input line yang aktif saja. Konsekuensi dari hal tersebut adalah perlunya menambahkan informasi kepemilikan data pada setiap slot waktu berupa identitas pengguna atau identitas input line yang bersangkutan.
Penambahan informasi pada setiap slot waktu yang dikirim merupakan overhead pada Asynchronous TDM.
Gambar di bawah ini menyajikan contoh ilustrasi yang sama dengan gambar Ilustrasi hasil sampling dari input line jika ditransmisikan dengan Asynchronous TDM.
Gambar Frame pada Asysnchronous TDM
Frequency Division Multiplexing (FDM)
Prinsip dari FDM adalah pembagian bandwidth saluran transmisi atas sejumlah kanal (dengan lebar pita frekuensi yang sama atau berbeda) dimana masing-masing kanal dialokasikan ke pasangan entitas yang berkomunikasi. Contoh aplikasi FDM ini yang polpuler pada saat ini adalah Jaringan Komunikasi Seluler, seperti GSM ( Global System Mobile) yang dapat menjangkau jarak 100 m s/d 35 km. Tingkatan generasi GSM adalah sbb:
First-generation: Analog cellular systems (450-900 MHz)
* Frequency shift keying for signaling
* FDMA for spectrum sharing
* NMT (Europe), AMPS (US)
Second-generation: Digital cellular systems (900, 1800 MHz)
* TDMA/CDMA for spectrum sharing
* Circuit switching
* GSM (Europe), IS-136 (US), PDC (Japan)
2.5G: Packet switching extensions
* Digital: GSM to GPRS
* Analog: AMPS to CDPD
3G:
* High speed, data and Internet services
* IMT-2000
Gambar Pemakaian Frekwensi pada GSM
FDM yaitu pemakaian secara bersama kabel yang mempunyai bandwidth yang tinggi terhadap beberapa frekuensi (setiap channel akan menggunakan frekuensi yang berbeda). Contoh metoda multiplexer ini dapat dilihat pada kabel coaxial TV, dimana beberapa channel TV terdapat beberapa chanel, dan kita hanya perlu tunner (pengatur channel) untuk gelombang yang dikehendaki. Pada teknik FDM, tidak perlu ada MODEM karena multiplexer juga bertindak sebagai modem (membuat permodulatan terhadap data digital).
Kelemahan Modem disatukan dengan multiplexer adalah sulitnya meng-upgrade ke komponen yang lebih maju dan mempunyai kecepatan yang lebih tinggi (seperti teknik permodulatan modem yang begitu cepat meningkat).
Kelemahannya adalah jika ada channel (terminal) yang tidak menghantar data, frekuensi yang dikhususkan untuk membawa data pada channel tersebut tidak tergunakan dan ini merugikandan juga harganya agak mahal dari segi pemakaian (terutama dibandingkan dengan TDM) kerana setiap channel harus disediakan frekuensinya.
Kelemahan lain adalah kerana bandwidth jalur atau media yang dipakai bersama-sama tidak dapat digunakan sepenuhnya, kerana sebagian dari frekuensi terpaksa digunakan untuk memisahkan antara frekuensi channelchannel yang ada. Frekuensi pemisah ini dipanggil guardband.
Gambar Frequency Division Multiplexing
Pengalokasian kanal (channel) ke pasangan entitas yang berkomunikasi diilustrasikan pada gambar dibawah ini :
Gambar Contoh penerapan FDM dengan 4 pengguna
Code Division Multiplexing (CDM)
Code Division Multiplexing (CDM) dirancang untuk menanggulangi kelemahankelemahan yang dimiliki oleh teknik multiplexing sebelumnya, yakni TDM dan FDM.. Contoh aplikasinya pada saat ini adalah jaringan komunikasi seluler CDMA (Flexi) Prinsip kerja dari CDM adalah sebagai berikut :
1. Kepada setiap entitas pengguna diberikan suatu kode unik (dengan panjang 64 bit) yang disebut chip spreading code.
2. Untuk pengiriman bit ‘1’, digunakan representasi kode (chip spreading code) tersebut.
3. Sedangkan untuk pengiriman bit ‘0’, yang digunakan adalah inverse dari kode tersebut.
4. Pada saluran transmisi, kode-kode unik yang dikirim oleh sejumlah pengguna akan ditransmisikan dalam bentuk hasil penjumlahan (sum) dari kode-kode tersebut.
5. Di sisi penerima, sinyal hasil penjumlahan kode-kode tersebut akan dikalikan dengan kode unik dari si pengirim (chip spreading code) untuk diinterpretasikan.
selanjutnya :
- jika jumlah hasil perkalian mendekati nilai +64 berarti bit ‘1’,
- jika jumlahnya mendekati –64 dinyatakan sebagai bit ‘0’.
Contoh penerapan CDM untuk 3 pengguna (A,B dan C) menggunakan panjang kode 8 bit (8-chip spreading code) dijelaskan sebagai berikut :
a. Pengalokasian kode unik (8-chip spreading code) bagi ketiga pengguna :
- kode untuk A : 10111001
- kode untuk B : 01101110
- kode untuk C : 11001101
b. Misalkan pengguna A mengirim bit 1, pengguna B mengirim bit 0 dan pengguna C mengirim bit 1. Maka pada saluran transmisi akan dikirimkan kode berikut :
- A mengirim bit 1 : 10111001 atau + – + + + – - +
- B mengirim bit 0 : 10010001 atau + – - + – - – +
- C mengirim bit 1 : 11001101 atau + + – - + + – +
- hasil penjumlahan (sum) = +3,-1,-1,+1,+1,-1,-3,+3
c. Pasangan dari A akan menginterpretasi kode yang diterima dengan cara :
- Sinyal yang diterima : +3 –1 –1 +1 +1 –1 –3 +3
- Kode milik A : +1 –1 +1 +1 +1 -1 –1 +1
- Hasil perkalian (product) : +3 +1 –1 +1 +1 +1 +3 +3 = 12
Nilai +12 akan diinterpretasi sebagai bit ‘1’ karena mendekati nilai +8.
d. Pasangan dari pengguna B akan melakukan interpretasi sebagai berikut :
- sinyal yang diterima : +3 –1 –1 +1 +1 –1 –3 +3
- kode milik B : –1 +1 +1 –1 +1 +1 +1 –1
- jumlah hasil perkalian : –3 –1 –1 –1 +1 –1 –3 –3 = -12
berarti bit yang diterima adalah bit ‘0’, karena mendekati nilai –8.
Wavelength Division Multiplexing (WDM).
Teknik multiplexing ini digunakan pada transmisi data melalui serat optik (optical fiber) dimana sinyal yang ditransmisikan berupa sinar. Pada WDM prinsip yang diterapkan mirip seperti pada FDM, hanya dengan cara pembedaan panjang gelombang (wavelength) sinar. Sejumlah berkas sinar dengan panjang gelombang
berbeda ditransmisikan secara simultan melalui serat optik yang sama (dari jenis Multi mode optical fiber).
Gambar Wavelength Division Multiplexing
Optical code Division Multiplexing.
Prinsip yang digunakan pada ODM serupa dengan CDM, hanya dalam hal ini yang dikode adalah berupa sinyal analog (sinar) dengan pola tertentu. Sejumlah berkas sinar dengan pola sinyal berbeda ditransmisikan melalui serat optik dengan menggunakan prinsip TDM (berupa temporal-spectral signal structure).
Di sisi penerima setiap berkas sinar tersebut akan diinterpretasi untuk setiap pasangan pengguna untuk memperoleh kembali data yang dikode tersebut dengan cara mengenali terlebih dahulu pola sinyal yang digunakan.
Digital adalah suatu terapan ilmu elektronika yang tersusun dari berbagai komponen elektronika. Bisa juga disebut dengan rangkaian elektronika yang membutuhkan aliran listrik atau energi kimia untuk menggerakkan atau membuat benda tersebut berfungsi.Biasanya komponen-komponen digital ini hanya memiliki dua keadaan, 1 ( high, active, true ) dan 0 ( low, nonactive, false ). Pada prakteknya, dunia digital saat ini telah menguasai elektronika dan merupakan suatu "harga" buat suatu komponen elektronika.
Keadaan dalam digital ini berasumsi kepada bilangan biner (1 dan 0). Sistem digital ini bisa kita gambarkan proses biner seperti pada saklar lampu, yang memiliki 2 keadaan, yaitu Off (0) dan On (1). Misalnya ada 10 lampu dengan saklarnya, jika kita membuat saklar itu dinyalakan dalam posisi 1, misalnya, maka ia akan membentuk huruf "gambar", dan jika dinyalakan dalam posisi 0, ia akan membentuk "gambar mati". Begitulah kira-kira biner digital tersebut. Digital hanya berada pada 2 posisi yang berbeda. Hal ini juga sama seperti dengan sistem flip-flop.
elektronika digital
Pengelompokan biner dalam komputer selalu berjumlah 8, dengan istilah 1 Byte. Dalam istilah komputer, 1 Byte = 8 bit. Kode-kode rancang bangun komputer, seperti ASCII, American Standard Code for Information Interchange menggunakan sistem peng-kode-an 1 Byte.
Oleh karena itu, jika kita berkeinginan menuliskan angka "1" desimal, dalam digitalnya kita harus menuliskan "0000 0001".
Dalam prakteknya, elektronika digital saat ini telah merajai setiap perangkat elektronika. Sebut saja misalnya Televisi. Dengan adanya sistem pengaturan Volume (+) ataupun Volume (-) ataupun menu lainnya dari remote, itu telah membuktikan bahwa teknologi digital telah diterapkan didalam televisi tersebut.
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar